Selected-GenAtlas references SOURCE GeneCards NCBI Gene Swiss-Prot Orphanet Ensembl
HGNC UniGene Nucleotide OMIM UCSC
Home Page
FLASH GENE
Symbol SOD1 contributors: npt/pgu/shn - updated : 10-01-2023
HGNC name superoxide dismutase 1, soluble
HGNC id 11179
ASSOCIATED DISORDERS
corresponding disease(s) ALS1 , STHAP
related resource An online database for ALS/SOD1 genetic mutations
Other morbid association(s)
TypeGene ModificationChromosome rearrangementProtein expressionProtein Function
constitutional germinal mutation   --over  
an aberrant SOD1 mutant 32 kda is present (or associated with) sporadic or familial ALS pathology, suggesting a possible involvement in that pathology
constitutional     --over  
overexpressed in brain of down syndrome (temporal, occipital parietal cortex)
Susceptibility
Variant & Polymorphism
Candidate gene
Marker
  • measurement of axonal transport may provide an early biomarker of disease progression and enable a timely diagnosis of motor neurons impairment, when the disease may be more responsive to therapeutic intervention
  • Therapy target
    SystemTypeDisorderPubmed
    neuromuscularlaterale amyotrophy sclerosis 
    gene silencing strategies targeting SOD1 may represent effective approaches for familial and sporadic ALS-related neurodegeneration
    neuromuscularlaterale amyotrophy sclerosis 
    by deleting NF-L, the major neurofilament subunit required for filament assembly, onset and progression of disease caused by familial ALS-linked SOD1 mutant G85R are significantly slowed, while selectivity of mutant-mediated toxicity for motor neurons is
    metabolismlipidcholesterol
    could be used as a potential agent in the treatment of hypercholesterolemia
    neuromuscularlaterale amyotrophy sclerosis 
    viral delivery of transcription-mediated siRNA is shown to suppress mutant SOD1 accumulation within muscle alone but to be insufficient to maintain grip strength, whereas delivery to both motor neurons and muscle is sufficient
    neuromuscularlaterale amyotrophy sclerosis 
    therapeutic interventions focusing on pharmacological as well as genetic regulations of copper homeostasis to modify the pathological process in SOD1-ALS
    neuromuscularlaterale amyotrophy sclerosis 
    anti-SOD1 antibodies, considered as ALS therapeutics, can act by blocking the uptake of SOD1, but also by blocking the toxic effects of intracellular SOD1
    ANIMAL & CELL MODELS
  • mutations in the Sod1 Drosophila gene resulte in striking neuropathology (
  • chronically inhibition of SOD1 by either antisense oligodeoxynucleotides or diethyldithiocarbamate in spinal cord organotypic cultures result in the apoptotic degeneration of spinal neurons, including motor neurons, over several weeks (
  • overexpression of Sod1 in transgenic mice affects motor neurons (
  • mice whith a incorporated transgene encoding for the human SOD1 mutation develop a form of motor neurone disease that closely resembles human forms of this disease (
  • In the FVB/N background, mice expressing mG86R SOD1 develop an ALS phenotype at approximately 100 days. However, when these mice were bred into a mixed background of C57Bl6/129Sv, the onset of the ALS phenotype was delayed 143 days to >2 years (
  • deregulation of Cdk5 activity associated with the hyperphosphorylation of tau and neurofilament proteins in mice expressing a mutant superoxide dismutase (G37R)) linked to amyotrophic lateral sclerosis (
  • transgenic C. elegans strains expressing mutant human SOD1 showed vulnerability to oxidative stress (
  • expression profiling of gene expression in SOD1-G93A transgenic mouse spinal cords indicates extensive glial activation coincident with the onset of paralysis at 3 months of age (
  • transgenic rat model harboring the G93A mutation overexpressing the SOD1 gene result in ALS-like motor neuron disease (
  • in G93A mice, mitochondrial respiration, electron transfer chain, and ATP synthesis were severely defective and evidence of oxidative damage to mitochondrial proteins and lipids at the time of onset of the disease (
  • SOD1 RNA interference (RNAi) induces senescence in normal human fibroblasts dependong on p53 induction (
  • motor neurons accumulate detergent-insoluble forms of SOD1 in transgenic mice expressing a SOD1 variant that mutates the four histidine residues that coordinately bind Cu (
  • adipose tissue accumulation, increased energy expenditure, and concomitant skeletal hypermetabolism ALS G93A mouse (
  • Overexpression of human SOD1 in mouse NIH3T3 fibroblasts increased SOD activity, enhanced intracellular generation of H2O2 and significantly stimulated angiogenesis by VEGF production (
  • transgenic mice expressing SOD1-L126Z display motor neuron disease characterized by accumulation of non-ubiquitinated detergent-insoluble SOD1-L126Z in spinal cords and aggregates of SOD1-L126Z in motor neuron somatodendritic compartments (
  • dysregulated redox stress in ALS mice caused by NADPH oxidases Nox1 and Nox2 significantly influenced the progression of motor neuron disease caused by mutant SOD1(G93A) expression (
  • in the spinal cord of transgenic mice expressing the familial ALS SOD1 gene mutation G93A, a decrease in constitutive proteasome subunits during disease progression and an increased immunoproteasome expression were found (
  • impairment of axonal transport of choline acetyltransferase and acetylcholine release in SOD1(G93A)-transgenic mouse (
  • E40K missense mutation in canin SOD1 gene lead to degenerative myelopathy (
  • G85R/WTSOD1 double transgenic mice had an acceleration of disease onset and shortened survival compared with G85R single transgenic mice, and there was an earlier appearance of pathological and immunohistochemical abnormalities (
  • Mitochondrial respiration, electron transfer chain, and ATP synthesis were severely defective in G93A mutated hSOD1 mice and oxidative damage to mitochondrial proteins and lipids were observed
  • Misfolded SOD1 protein was found primarily within degenerating motor neurons in ALS mouse models with the human G37R, G85R, and G93A SOD1 mutations
  • Mutant SOD1 preferentially associates with the cytoplasmic face of mitochondria from spinal cords of rats and mice expressing SOD1 mutations (
  • SOD1 total knockout (SOD1-deficient) mice display a high level of superoxide anion in the retinal ganglion cells leading to their degeneration (
  • Mutant SOD1 mice lacking motor neuron TrkB live a month longer than controls and retain motor function for a longer period, particularly in the early phase of the disease subserved by slowed motor neuron loss, persistence of neuromuscular junction integrity and reduced astrocytic and microglial reactivity within the spinal cord
  • inhibition of Shh signaling pathway exacerbated rat ischemic damage caused by permanent middle cerebral artery occlusion, which may be correlated with down-regulated expression of Gli1, Ptch1 and Sod1