Citations for
1CETD2, SRPS5, WDR35
Down-regulated WDR35 contributes to fetal anomaly via regulation of osteogenic differentiation.
Hu Z, Hong S, Zhang Y, Dai H, Lin S, Yi T, Zhuang H.
Gene May 20;697:48-56. doi: 10.1016/j.gene.2019.02.034. Epub 2019 Feb 18 2019
2MTOR, RRAGA, RRAGB, RRAGC, WDR35
RagA, an mTORC1 activator, interacts with a hedgehog signaling protein, WDR35/IFT121.
Sekiguchi T, Furuno N, Ishii T, Hirose E, Sekiguchi F, Wang Y, Kobayashi H.
Genes Cells. Feb;24(2):151-161. doi: 10.1111/gtc.12663. Epub 2019 Jan 15. 2019
3CETD2, WDR35
Clinical and molecular genetic characterization of a male patient with Sensenbrenner syndrome (cranioectodermal dysplasia) and biallelic WDR35 mutations.
Walczak-Sztulpa J, Wawrocka A, Swiader-Lesniak A, Socha M, Jamsheer A, Drozdz D, Latos-Bielenska A, Zachwieja K.
Birth Defects Res. Mar 1;110(4):376-381. doi: 10.1002/bdr2.1151. Epub 2017 Nov 14. 2018
4MKKS, SDCCAG8, SLSN7, SRPS5, WDR35
Rare renal ciliopathies in non-consanguineous families that were identified by targeted resequencing.
Yamamura T, Morisada N, Nozu K, Minamikawa S, Ishimori S, Toyoshima D, Ninchoji T, Yasui M, Taniguchi-Ikeda M, Morioka I, Nakanishi K, Nishio H, Iijima K.
Clin Exp Nephrol 21(1):136-142. doi: 10.1007/s10157-016-1256-x. Epub 2016 Mar 11. 2017
5IFT43, SRTD18, SRTD7, WDR35
Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia.
Duran I, Taylor SP, Zhang W, Martin J, Qureshi F, Jacques SM, Wallerstein R, Lachman RS, Nickerson DA, Bamshad M, Cohn DH, Krakow D.
Cilia Apr 10;6:7. doi: 10.1186/s13630-017-0051-y. eCollection 2017. 2017
6IFT140, IFT43, WDR35
Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis
Zhu B, Zhu X, Wang L, Liang Y, Feng Q, Pan J.
PLoS Genet. .Feb 16;13(2):e1006627. doi: 10.1371/journal.pgen.1006627. 2017
7SRPS5, WDR35
Exome sequencing for the differential diagnosis of ciliary chondrodysplasias: Example of a WDR35 mutation case and review of the literature
Antony D, Nampoory N, Bacchelli C, Melhem M, Wu K, James CT, Beales PL, Hubank M, Thomas D, Mashankar A, Behbehani K, Schmidts M, Alsmadi O
Eur J Med Genet. Dec;60(12):658-666. doi: 10.1016/j.ejmg.2017.08.019. Epub 2017 Sep 12. 2017
8WDR35
Role for the IFT-A Complex in Selective Transport to the Primary Cilium.
Fu W, Wang L, Kim S, Li J, Dynlacht BD.
Cell Rep Nov 1;17(6):1505-1517. doi: 10.1016/j.celrep.2016.10.018 2016
9CETD2, WDR35
Novel WDR35 mutations in patients with cranioectodermal dysplasia (Sensenbrenner syndrome).
Hoffer JL, Fryssira H, Konstantinidou AE, Ropers HH, Tzschach A.
Clin.Genet Jan;83(1):92-5. doi: 10.1111/j.1399-0004.2012.01880.x. Epub 2012 Apr 9 2013
10SRPS5, WDR35
Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis.
Mill P, Lockhart PJ, Fitzpatrick E, Mountford HS, Hall EA, Reijns MA, Keighren M, Bahlo M, Bromhead CJ, Budd P, Aftimos S, Delatycki MB, Savarirayan R, Jackson IJ, Amor DJ.
Am J Hum Genet 88(4):508-15. 2011
11CETD3, IFT122, IFT140, IFT43, TTC21B, WDR19, WDR35
C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome.
Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, Spruijt L, Cornelissen EA, Schuurs-Hoeijmakers JH, de Leeuw N, Cormier-Daire V, Brunner HG, Knoers NV, Roepman R.
J Med Genet 48(6):390-5. Epub 2011 Mar 4. 2011
12CETD2, WDR35
Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome.
Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG, Roepman R, Knoers NV, Veltman JA, Brunner HG.
Am J Hum Genet 87(3):418-23.PMID: 20817137 2010
13WDR35
Naofen, a novel WD40-repeat protein, mediates spontaneous and tumor necrosis factor-induced apoptosis.
Feng GG, Li C, Huang L, Tsunekawa K, Sato Y, Fujiwara Y, Komatsu T, Honda T, Fan JH, Goto H, Koide T, Hasegawa T, Ishikawa N.
Biochem Biophys Res Commun 394(1):153-7. Epub 2010 Mar 1.PMID: 20193664 2010
14WDR35
Role of naofen, a novel WD repeat-containing protein, in reducing nitric oxide-induced relaxation.
Feng GG, Yamada M, Wongsawatkul O, Li C, Huang L, An J, Komatsu T, Fujiwara Y, Naohisa I.
Clin Exp Pharmacol Physiol 35(12):1447-53. Epub 2008 Jul 29.PMID: 18671723 2008
15ALPK3, ARHGAP21, ARHGAP28, ASH1L, BOD1L, CASKIN1, CDH6, CGN, CHD7, COG1, CPSF2, CRAMP1L, DNAH1, EBF4, EIF2AK1, EIF2AK4, FAM135A, FAM63A, FBXO41, FBXO42, FGD6, FRMD4A, G2E3, HACE1, HEATR5B, HOMEZ, IBTK, IFT80, IGSF9, JMJD1C, KCNT1, KIAA1109, KIAA1328, KIAA1377, KIAA1383, KIAA1407, KIAA1430, KIAA1432, KIF17, KLF17, KLHDC5, KLHL11, KLHL12, KLHL13, KLHL14, KLHL15, KLHL8, KLHL9, LRP2BP, LRRC7, MARCH4, MIB1, MRTFA, N4BP2, NFIA, NUFIP2, PCDH10, PDCD6IP, PDP2, PTCHD2, RBM27, RCOR3, RGAG1, ROBO2, RPAP1, SEMA6A, SH3PXD2B, SIPA1L2, STAMBPL1, STARD9, TSR1, TULP4, TXNDC16, UPF2, WDFY1, WDR11, WDR35, ZMYM6, ZNF391, ZNF395, ZNF398, ZNF471, ZNF687, ZNFX1
Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.
Nagase T, Kikuno R, Ishikawa KI, Hirosawa M, Ohara O.
DNA Res 7(1):65-73. 2000