Citations for
1UPF1, UPF2, UPF3A, UPF3B
ATP hydrolysis by UPF1 is required for efficient translation termination at premature stop codons.
Serdar LD, Whiteside DL, Baker KE.
Nat Commun 7:14021. doi: 10.1038/ncomms14021. 2016
2UPF2
Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex.
López-Perrote A, Castaño R, Melero R, Zamarro T, Kurosawa H, Ohnishi T, Uchiyama A, Aoyagi K, Buchwald G, Kataoka N, Yamashita A, Llorca O.
Nucleic Acids Res 44(4):1909-23. doi: 10.1093/nar/gkv1527. Epub 2016 Jan 5. 2016
3UPF2
UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts.
Bao J, Vitting-Seerup K, Waage J, Tang C, Ge Y, Porse BT, Yan W.
PLoS Genet 12(5):e1005863. doi: 10.1371/journal.pgen.1005863. eCollection 2016 May. 2016
4UPF2
UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome.
Bao J, Tang C, Yuan S, Porse BT, Yan W.
Development 142(2):352-62. doi: 10.1242/dev.115642. Epub 2014 Dec 11. 2015
5SMG1, SMG8, SMG9, UPF1, UPF2
Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD.
Melero R, Uchiyama A, Castaño R, Kataoka N, Kurosawa H, Ohno S, Yamashita A, Llorca O.
Structure 22(8):1105-19. doi: 10.1016/j.str.2014.05.015. Epub 2014 Jul 4. 2014
6UPF2
Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2.
Clerici M, Deniaud A, Boehm V, Gehring NH, Schaffitzel C, Cusack S.
Nucleic Acids Res 42(4):2673-86. doi: 10.1093/nar/gkt1197. Epub 2013 Nov 23. 2014
7PTBP3, UPF1, UPF2
A new function of ROD1 in nonsense-mediated mRNA decay.
Brazão TF, Demmers J, van IJcken W, Strouboulis J, Fornerod M, Romão L, Grosveld FG.
FEBS Lett 586(8):1101-10. doi: 10.1016/j.febslet.2012.03.015. Epub 2012 Mar 21. 2012
8UPF1, UPF2
Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2.
Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E.
Mol Cell 41(6):693-703. 2011
9UPF2
UPF2 is a critical regulator of liver development, function and regeneration.
Thoren LA, Nørgaard GA, Weischenfeldt J, Waage J, Jakobsen JS, Damgaard I, Bergström FC, Blom AM, Borup R, Bisgaard HC, Porse BT.
PLoS One 5(7):e11650. 2010
10UPF1, UPF2
Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2.
Clerici M, Mourão A, Gutsche I, Gehring NH, Hentze MW, Kulozik A, Kadlec J, Sattler M, Cusack S.
EMBO J 28(15):2293-306. Epub 2009 Jun 25. 2009
11UPF1, UPF2
Upf1 potentially serves as a RING-related E3 ubiquitin ligase via its association with Upf3 in yeast.
Takahashi S, Araki Y, Ohya Y, Sakuno T, Hoshino S, Kontani K, Nishina H, Katada T.
RNA 14(9):1950-8. Epub 2008 Aug 1. 2008
12UPF1, UPF2, UPF3B
NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity.
Chamieh H, Ballut L, Bonneau F, Le Hir H.
Nat Struct Mol Biol 15(1):85-93. Epub 2007 Dec 9. 2008
13UPF2
Role for Upf2p phosphorylation in Saccharomyces cerevisiae nonsense-mediated mRNA decay.
Wang W, Cajigas IJ, Peltz SW, Wilkinson MF, González CI.
Mol Cell Biol 26(9):3390-400. 2006
14UPF1, UPF2, NCBP1
CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells.
Hosoda N, Kim YK, Lejeune F, Maquat LE.
Nat Struct Mol Biol 12(10):893-901. Epub 2005 Sep 25. 2005
15UPF2, UPF3A, UPF3B
Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4).
Serin G, Gersappe A, Black JD, Aronoff R, Maquat LE.
Mol Cell Biol 21(1):209-23. 2001
16UPF2, UPF3A, UPF3B
Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon.
Lykke-Andersen J, Shu MD, Steitz JA.
Cell 103(7):1121-31. 2000
17UPF2
Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes.
Mendell JT, Medghalchi SM, Lake RG, Noensie EN, Dietz HC.
Mol Cell Biol 20(23):8944-57. 2000
18ALPK3, ARHGAP21, ARHGAP28, ASH1L, BOD1L, CASKIN1, CDH6, CGN, CHD7, COG1, CPSF2, CRAMP1L, DNAH1, EBF4, EIF2AK1, EIF2AK4, FAM135A, FAM63A, FBXO41, FBXO42, FGD6, FRMD4A, G2E3, HACE1, HEATR5B, HOMEZ, IBTK, IFT80, IGSF9, JMJD1C, KCNT1, KIAA1109, KIAA1328, KIAA1377, KIAA1383, KIAA1407, KIAA1430, KIAA1432, KIF17, KLF17, KLHDC5, KLHL11, KLHL12, KLHL13, KLHL14, KLHL15, KLHL8, KLHL9, LRP2BP, LRRC7, MARCH4, MIB1, MRTFA, N4BP2, NFIA, NUFIP2, PCDH10, PDCD6IP, PDP2, PTCHD2, RBM27, RCOR3, RGAG1, ROBO2, RPAP1, SEMA6A, SH3PXD2B, SIPA1L2, STAMBPL1, STARD9, TSR1, TULP4, TXNDC16, UPF2, WDFY1, WDR11, WDR35, ZMYM6, ZNF391, ZNF395, ZNF398, ZNF471, ZNF687, ZNFX1
Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.
Nagase T, Kikuno R, Ishikawa KI, Hirosawa M, Ohara O.
DNA Res 7(1):65-73. 2000