Citations for
1TPCN1, TPCN2
Exploring the biophysical evidence that mammalian two-pore channels are NAADP-activated calcium-permeable channels.
Pitt SJ, Reilly-O'Donnell B, Sitsapesan R.
J Physiol 594(15):4171-9. doi: 10.1113/JP270936. Epub 2016 Mar 31. Review. 2016
2TPCN1, TPCN2
The two pore channel TPC2 is dispensable in pancreatic β-cells for normal Ca²⁺ dynamics and insulin secretion.
Cane MC, Parrington J, Rorsman P, Galione A, Rutter GA.
Cell Calcium 59(1):32-40. doi: 10.1016/j.ceca.2015.12.004. Epub 2015 Dec 23. 2016
3TPCN1, TPCN2
Endolysosomal two-pore channels regulate autophagy in cardiomyocytes.
García-Rúa V, Feijóo-Bandín S, Rodríguez-Penas D, Mosquera-Leal A, Abu-Assi E, Beiras A, María Seoane L, Lear P, Parrington J, Portolés M, Roselló-Lletí E, Rivera M, Gualillo O, Parra V, Hill JA, Rothermel B, González-Juanatey JR, Lago F.
J Physiol 594(11):3061-77. doi: 10.1113/JP271332. Epub 2016 Feb 4. 2016
4TPCN1, TPCN2
Absence of intracellular ion channels TPC1 and TPC2 leads to mature-onset obesity in male mice, due to impaired lipid availability for thermogenesis in brown adipose tissue.
Lear PV, González-Touceda D, Porteiro Couto B, Viaño P, Guymer V, Remzova E, Tunn R, Chalasani A, García-Caballero T, Hargreaves IP, Tynan PW, Christian HC, Nogueiras R, Parrington J, Diéguez C.
Endocrinology 156(3):975-86. doi: 10.1210/en.2014-1766. Epub 2014 Dec 29. 2015
5TPCN1, TPCN2
Function and dysfunction of two-pore channels.
Patel S.
Sci Signal 8(384):re7. doi: 10.1126/scisignal.aab3314. Review. 2015
6TPCN1
Two-pore channel 1 interacts with citron kinase, regulating completion of cytokinesis.
Horton JS, Wakano CT, Speck M, Stokes AJ.
Channels (Austin) 9(1):21-9. doi: 10.4161/19336950.2014.978676. 2015
7TPCN1, TPCN2
TPC1 has two variant isoforms, and their removal has different effects on endo-lysosomal functions compared to loss of TPC2.
Ruas M, Chuang KT, Davis LC, Al-Douri A, Tynan PW, Tunn R, Teboul L, Galione A, Parrington J.
Mol Cell Biol 34(21):3981-92. doi: 10.1128/MCB.00113-14. Epub 2014 Aug 18. 2014
8TPCN1
Reconstituted human TPC1 is a proton-permeable ion channel and is activated by NAADP or Ca2+.
Pitt SJ, Lam AK, Rietdorf K, Galione A, Sitsapesan R.
Sci Signal 7(326):ra46. doi: 10.1126/scisignal.2004854. 2014
9TPCN1
The voltage-gated sodium channel TPC1 confers endolysosomal excitability.
Cang C, Bekele B, Ren D.
Nat Chem Biol 10(6):463-9. doi: 10.1038/nchembio.1522. Epub 2014 Apr 28. 2014
10HAX1, TPCN1, TPCN2
Hax-1 identified as a two-pore channel (TPC)-binding protein
Lam AK, Galione A, Lai FA, Zissimopoulos S.
FEBS Lett. Nov 29;587(23):3782-6. doi: 10.1016/j.febslet.2013.10.031. Epub 2013 Nov 1. 2013
11TPCN1, TPCN2
Two-pore channel 2 (TPC2) modulates store-operated Ca(2+) entry.
López J, Dionisio N, Berna-Erro A, Galán C, Salido GM, Rosado JA.
Biochim Biophys Acta 1823(10):1976-83. doi: 10.1016/j.bbamcr.2012.08.002. 2012
12TPCN1, TPCN2
TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes.
Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H.
Cell 151(2):372-83. doi: 10.1016/j.cell.2012.08.036. 2012
13MCOLN1, TPCN1
Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels.
Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, Brailoiu E, Patel S, Muallem S.
J Biol Chem 286(26):22934-42. doi: 10.1074/jbc.M110.210930. Epub 2011 May 3. 2011
14TPCN1, TPCN2
NAADP mobilizes calcium from acidic organelles through two-pore channels.
Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX.
Nature 459(7246):596-600. Epub 2009 Apr 22. 2009
15TPCN1
Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels.
Ishibashi K, Suzuki M, Imai M.
Biochem Biophys Res Commun 270(2):370-6. 2000
16AARS2, ADAMTSL3, AHRR, AMIGO1, ANKFY1, ARHGAP31, ARID1A, ARID1B, ASAP1, ASB1, BACE1, BIRC6, BRPF3, C14orf118, CASKIN2, CCPG1, CD2BP2, CNOT6, COG6, CPAMD8, DCDC2, DLG3, ERBIN, ERGIC1, FAM190B, FAM63B, FBXO40, FILIP1, FSTL5, FZR1, GALNTL1, GATAD2B, GDA, GMEB2, GNPTAB, GRID1, GRIPAP1, HECTD1, HEG1, HHATL, INTU, IPO9, ISY1, KCNH3, KIAA1143, KIAA1161, KIAA1191, KIAA1217, KIAA1274, LCHN, LMBR1L, LRFN2, LRRC47, MACF1, MAP7D1, MIER2, MTA3, MYO5B, MYOF, NDFIP2, NDRG2, NELFB, NLGN4X, NLN, OGDHL, PAIP2B, PAK7, PECR, PLEKHG1, PLEKHH1, PNKD, PNMAL2, PPP1R9A, PRDM10, REXO1, RIMKLB, RNF150, SGPL1, SHROOM4, SLC39A10, SLC45A4, SRGAP2, STK36, SULF2, TBC1D24, TLE4, TMCC3, TPCN1, TRMT6, TTC7A, TTC7B, USP31, ZBTB47, ZC4H2, ZNF295, ZNF490, ZNF644, ZNF777
Characterization of cDNA clones selected by the GeneMark analysis from size-fractionated cDNA libraries from human brain.
Hirosawa M, Nagase T, Ishikawa K, Kikuno R, Nomura N, Ohara O.
DNA Res 6(5):329-36. 1999