Citations for
1LIME1, SPTBN2
DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children
Li SC, Kuo HC, Huang LH, Chou WJ, Lee SY, Chan WC, Wang LJ.
Children (Basel). Jan 29;8(2):92. doi: 10.3390/children8020092. 2021
2SCA5, SCAR14, SPTBN2
Heterozygous missense variants of SPTBN2 are a frequent cause of congenital cerebellar ataxia.
Nicita F, Nardella M, Bellacchio E, Alfieri P, Terrone G, Piccini G, Graziola F, Pignata C, Capuano A, Bertini E, Zanni G.
Clin Genet lin Genet. 2019 May 8. doi: 10.1111/cge.13562. [Epub ahead of print] 2019
3SCA5, SPTBN2
Structural basis for high-affinity actin binding revealed by a β-III-spectrin SCA5 missense mutation.
Avery AW, Fealey ME, Wang F, Orlova A, Thompson AR, Thomas DD, Hays TS, Egelman EH.
Nat Commun 8(1):1350. doi: 10.1038/s41467-017-01367-w. 2017
4SPTBN2
Dysfunction of the β2-spectrin-based pathway in human heart failure.
Smith SA, Hughes LD, Kline CF, Kempton AN, Dorn LE, Curran J, Makara M, Webb TR, Wright P, Voigt N, Binkley PF, Janssen PM, Kilic A, Carnes CA, Dobrev D, Rasband MN, Hund TJ, Mohler PJ.
Am J Physiol Heart Circ Physiol 310(11):H1583-91. doi: 10.1152/ajpheart.00875.2015. Epub 2016 Apr 22. 2016
5SCAR14, SPTBN2
Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations.
Elsayed SM, Heller R, Thoenes M, Zaki MS, Swan D, Elsobky E, Zühlke C, Ebermann I, Nürnberg G, Nürnberg P, Bolz HJ.
Eur J Hum Genet 22(2):286-8. doi: 10.1038/ejhg.2013.150. Epub 2013 Jul 10. 2014
6ANK1, SPTBN2
β-III spectrin underpins ankyrin R function in Purkinje cell dendritic trees: protein complex critical for sodium channel activity is impaired by SCA5-associated mutations.
Clarkson YL, Perkins EM, Cairncross CJ, Lyndon AR, Skehel PA, Jackson M.
Hum Mol Genet 23(14):3875-82. doi: 10.1093/hmg/ddu103. Epub 2014 Mar 6. 2014
7SPTBN2
βIII spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex.
Salcedo-Sicilia L, Granell S, Jovic M, Sicart A, Mato E, Johannes L, Balla T, Egea G.
J Biol Chem 288(4):2157-66. doi: 10.1074/jbc.M112.406462. Epub 2012 Dec 11. 2013
8SCAR14, SPTBN2
Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development.
Lise S, Clarkson Y, Perkins E, Kwasniewska A, Sadighi Akha E, Schnekenberg RP, Suminaite D, Hope J, Baker I, Gregory L, Green A, Allan C, Lamble S, Jayawant S, Quaghebeur G, Cader MZ, Hughes S, Armstrong RJ, Kanapin A, Rimmer A, Lunter G, Mathieson I, Cazier JB, Buck D, Taylor JC, Bentley D, McVean G, Donnelly P, Knight SJ, Jackson M, Ragoussis J, Németh AH.
PLoS Genet 8(12):e1003074. doi: 10.1371/journal.pgen.1003074. Epub 2012 Dec 6. 2012
9SPTBN2
β-III spectrin is critical for development of purkinje cell dendritic tree and spine morphogenesis.
Gao Y, Perkins EM, Clarkson YL, Tobia S, Lyndon AR, Jackson M, Rothstein JD.
J Neurosci 31(46):16581-90. doi: 10.1523/JNEUROSCI.3332-11.2011. 2011
10SCA5, SPTBN2
Loss of beta-III spectrin leads to Purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans.
Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP, Jack J, Toraiwa J, Watanabe M, Rothstein JD, Lyndon AR, Wyllie DJ, Dutia MB, Jackson M.
J Neurosci 30(14):4857-67.PMID: 20371805 2010
11SCA5, SPTBN2
Beta-III spectrin mutation L253P associated with spinocerebellar ataxia type 5 interferes with binding to Arp1 and protein trafficking from the Golgi.
Clarkson YL, Gillespie T, Perkins EM, Lyndon AR, Jackson M.
Hum Mol Genet 19(18):3634-41. Epub 2010 Jul 5.PMID: 20603325 2010
12SPTBN2
Localization and structure of the ankyrin-binding site on beta2-spectrin.
Davis L, Abdi K, Machius M, Brautigam C, Tomchick DR, Bennett V, Michaely P.
J Biol Chem 284(11):6982-7. Epub 2008 Dec 20.PMID: 19098307 2009
13SCA5, SPTBN2
Screening of the SPTBN2 (SCA5) gene in German SCA patients.
Zühlke C, Bernard V, Dalski A, Lorenz P, Mitulla B, Gillessen-Kaesbach G, Bürk K.
J Neurol 254(12):1649-52. Epub 2007 Oct 25.PMID: 17940722 2007
14SPTBN2, SCA5
Spectrin mutations cause spinocerebellar ataxia type 5.
Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP.
Nat Genet 38(2):184-90. Epub 2006 Jan 22. 2006
15SPTBN2
Characterization of a new beta-spectrin gene which is predominantly expressed in brain.
Ohara O, Ohara R, Yamakawa H, Nakajima D, Nakayama M.
Brain Res Mol Brain Res 57(2):181-92. 1998
16ADAMTS3, AKAP6, ALMS1, ANKRD28, AREL1, ARHGEF10, ARHGEF11, ARHGEF17, ARNT2, BAZ2A, CABIN1, CAST, CHD9, CIC, CLEC16A, CLOCK, CTNND1, DCLK1, DDX46, DIDO1, DNAH9, DNM3, DOCK3, DYNC1H1, ECM29, ENTPD4, EPB41L1, EZH1, FRMPD4, GCC2, HECW1, HERC2, HISPPD1, HUWE1, IGSF1, KAT6B, KHNYN, KIAA0319, KIAA0355, KIAA0379, KIF3B, KMT2B, LBA1, MADD, MAST4, MCF2L, MDN1, MTMR3, MYO6, N4BP3, NACAD, NRCAM, PCDH9, PCDHGA8, PCDHGC3, PDZD2, PER2, PFAS, PLEKHM1, PLXNB2, PRORP, PRUNE2, PTPRN2, RAPGEF2, RIMBP2, RIMS1, RIPOR2, RUSC2, SALL2, SEC16A, SEMA3C, SEMA3E, SETD1A, SFRS14, SNPH, SPECC1L, SPTBN2, SR140, SRCAP, SRRM2, SYNJ2, TECPR2, TLN2, TRIM66, TTC37, UBR2, WNK1, XPO6, ZBTB39, ZBTB5, ZFYVE16, ZFYVE26, ZMYM3, ZNF518A, ZNF609, ZNF629, ZNF646
Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.
Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A,Kotani H, Nomura N, Ohara O.
DNA Res 4(2):141-50. 1997