Citations for
1IFT140, PKDL1
Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. 2022 PMID:
Senum SR, Li YSM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJM, Ong ACM, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA; Genomics England Research Consortium, the HALT PKD, CRISP, DIPAK, ADPKD Modifier, and TAME PKD studies, Harris PC.
Am J Hum Genet. Jan 6;109(1):136-156. doi: 10.1016/j.ajhg.2021.11.016. Epub 2021 Dec 9. 2022
2IFT140, RRPAS
Compound heterozygous IFT140 variants in two Polish families with Sensenbrenner syndrome and early onset end-stage renal disease.
Walczak-Sztulpa J, Posmyk R, Bukowska-Olech EM, Wawrocka A, Jamsheer A, Oud MM, Schmidts M, Arts HH, Latos-Bielenska A, Wasilewska A.
Orphanet J Rare Dis. Feb 1;15(1):36. doi: 10.1186/s13023-020-1303-2. 2020
3IFT140
Lineage tracing of cells expressing the ciliary gene IFT140 during bone development.
Chen Y, Fan Q, Zhang H, Tao D, Wang Y, Yue R, Sun Y.
Dev Dyn. Oct 23. doi: 10.1002/dvdy.266. Epub ahead of print 2020
4IFT140
Expression of IFT140 During Bone Development
Zhang C, Zhang S, Sun Y.
J Histochem Cytochem. Oct;67(10):723-734. doi: 10.1369/0022155419859357. Epub 2019 Jun 25. 2019
5IFT140
Novel IFT140 variants cause spermatogenic dysfunction in humans
Wang X, Sha YW, Wang WT, Cui YQ, Chen J, Yan W, Hou XT, Mei LB, Yu CC, Wang J.
Mol Genet Genomic Med. Sep;7(9):e920. doi: 10.1002/mgg3.920. Epub 2019 Aug 8 2019
6IFT140
Essential Role of IFT140 in Promoting Dentinogenesis.
Li G, Liu M, Zhang S, Wan H, Zhang Q, Yue R, Yan X, Wang X, Wang Z, Sun Y.
J Dent Res. Apr;97(4):423-431. doi: 10.1177/0022034517741283. Epub 2017 Dec 1 2018
7IFT140
Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice.
Zhang Y, Liu H, Li W, Zhang Z, Zhang S, Teves ME, Stevens C, Foster JA, Campbell GE, Windle JJ, Hess RA, Pazour GJ, Zhang Z.
Cytoskeleton (Hoboken) Feb;75(2):70-84. doi: 10.1002/cm.21427. Epub 2018 Jan 8. 2018
8IFT140, RRPAS
Cellular ciliary phenotyping indicates pathogenicity of novel variants in IFT140 and confirms a Mainzer-Saldino syndrome diagnosis.
Oud MM, Latour BL, Bakey Z, Letteboer SJ, Lugtenberg D, Wu KM, Cornelissen EAM, Yntema HG, Schmidts M, Roepman R, Bongers EMHF.
Cilia Feb 23;7:1. doi: 10.1186/s13630-018-0055-2. eCollection 2018 2018
9IFT140, RP80
Compound heterozygous variants in IFT140 as a cause of nonsyndromic retinitis pigmentosa.
Low T, Kostakis A, Balasubramanian M.
Ophthalmic Genet. Apr;39(2):286-287. doi: 10.1080/13816810.2017.1393827. Epub 2017 Nov 7 2018
10IFT140, IFT43, WDR35
Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis
Zhu B, Zhu X, Wang L, Liang Y, Feng Q, Pan J.
PLoS Genet. .Feb 16;13(2):e1006627. doi: 10.1371/journal.pgen.1006627. 2017
11IFT122, IFT140, TTC21B, WDR19
Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors
Hirano T, Katoh Y, Nakayama K.
Mol Biol Cell. Feb 1;28(3):429-439. doi: 10.1091/mbc.E16-11-0813. Epub 2016 Dec 8. 2017
12IFT140, RP80
Nonsyndromic Retinal Dystrophy due to Bi-Allelic Mutations in the Ciliary Transport Gene IFT140.
Hull S, Owen N, Islam F, Tracey-White D, Plagnol V, Holder GE, Michaelides M, Carss K, Raymond FL, Rozet JM, Ramsden SC, Black GC, Perrault I, Sarkar A, Moosajee M, Webster AR, Arno G, Moore AT.
Invest Ophthalmol Vis Sci. Mar;57(3):1053-62. doi: 10.1167/iovs.15-17976. 2016
13IFT140, RP80
Mutations in human IFT140 cause non-syndromic retinal degeneration
Xu M, Yang L, Wang F, Li H, Wang X, Wang W, Ge Z, Wang K, Zhao L, Li H, Li Y, Sui R, Chen R.
Hum Genet. Oct;134(10):1069-78. doi: 10.1007/s00439-015-1586-x. Epub 2015 Jul 28. 2015
14IFT140
Distinct functions for IFT140 and IFT20 in opsin transport.
Crouse JA, Lopes VS, Sanagustin JT, Keady BT, Williams DS, Pazour GJ.
Cytoskeleton (Hoboken). May;71(5):302-10. doi: 10.1002/cm.21173. Epub 2014 Mar 25 2014
15IFT140, RRPAS
Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease
Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanović R, Peco-Antić A, Mache C, Hurles ME, Joksić I, Guć-Šćekić M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C.
Hum Mutat. May;34(5):714-24. doi: 10.1002/humu.22294. 2013
16IFT140, RRPAS
Mainzer-Saldino Syndrome Is a Ciliopathy Caused by IFT140 Mutations.
Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K, Orssaud C, Silva E, Baudouin V, Oud MM, Shannon N, Le Merrer M, Roche O, Pietrement C, Goumid J, Baumann C, Bole-Feysot C, Nitschke P, Zahrate M, Beales P, Arts HH, Munnich A, Kaplan J, Antignac C, Cormier-Daire V, Rozet JM.
Am J Hum Genet 90(5):864-70. Epub 2012 Apr 12. 2012
17CETD3, IFT122, IFT140, IFT43, TTC21B, WDR19, WDR35
C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome.
Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, Spruijt L, Cornelissen EA, Schuurs-Hoeijmakers JH, de Leeuw N, Cormier-Daire V, Brunner HG, Knoers NV, Roepman R.
J Med Genet 48(6):390-5. Epub 2011 Mar 4. 2011
18IFT140, IFT22
A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum.
Adhiambo C, Blisnick T, Toutirais G, Delannoy E, Bastin P.
J Cell Sci 122(Pt 6):834-41. Epub 2009 Feb 24. 2009
19IFT140
Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons.
Tsujikawa M, Malicki J.
Neuron 42(5):703-16. 2004
20ATR16, CRAMP1L, DDX11L1, DECR2, GNG13, HAGHL, HBAP1, HBM, HN1L, HS3ST6, IFT140, IGFALS, ITFG3, JMJD8, LMF1, LUC7L, MEIOB, MRPL28, MSLNL, NARFL, POLR3K, RAB40C, RHBDL1, RPL23AP5, RPS20P2, RPS3AP2, RPUSD1, SEPX1, SPSB3, TJP1P, TMEM8, TPSB2, TPSD1, TPSG1, TPSP1, TPSP3, UNKL, WFIKKN1, ZSIG37P
Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16.
Daniels RJ, Peden JF, Lloyd C, Horsley SW, Clark K, Tufarelli C, Kearney L, Buckle VJ, Doggett NA, Flint J, Higgs DR.
Hum Mol Genet 10(4):339-52. 2001
21ADAMTSL2, ARMCX2, C2CD5, CACNA2D2, CEP104, CEP68, DHX16, ERAP1, GPRIN2, HDAC5, IFT140, IQSEC2, JAKMIP2, KIAA0513, KIAA0556, KIAA0564, KIAA0586, KIF5C, LCMT2, LRRC37A, MARCHF6, MED13, NCDN, PCLO, PIP5K1C, PLCB1, PLEKHG3, PPFIA4, PPRC1, PRPF4B, ProSAPiP1, RASA4, SARM1, SMC5, ST18, TRIM2, URB1, USP15, ZCCHC14, ZNF292, ZNF451
Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.
Nagase T, Ishikawa K, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O.
DNA Res 5(1):31-9. 1998