Citations for
1EXOSC1, EXOSC2
The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome.
Roppelt V, Klug G, Evguenieva-Hackenberg E.
FEBS Lett 584(13):2931-6. doi: 10.1016/j.febslet.2010.05.014. Epub 2010 May 17. 2010
2EXOSC1, EXOSC2
Structural framework for the mechanism of archaeal exosomes in RNA processing.
BŁttner K, Wenig K, Hopfner KP.
Mol Cell 20(3):461-71. 2005
3EXOSC1, EXOSC5
Protein-protein interactions of hCsl4p with other human exosome subunits.
Raijmakers R, Noordman YE, van Venrooij WJ, Pruijn GJ.
J Mol Biol 315(4):809-18. 2002
4EXOSC1, EXOSC2, EXOSC3, EXOSC4, EXOSC5, EXOSC6, EXOSC7, EXOSC8, EXOSC9, EXOSC10, PNPT1
Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring.
Raijmakers R, Egberts WV, van Venrooij WJ, Pruijn GJ.
J Mol Biol 323(4):653-63. 2002
5EXOSC2, EXOSC3, EXOSC4, EXOSC1, EXOSC5, EXOSC6, EXOSC7, EXOSC9, EXOSC10
AU binding proteins recruit the exosome to degrade ARE-containing mRNAs.
Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M.
Cell 107(4):451-64. 2001
6EXOSC1
Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA.
van Hoof A, Staples RR, Baker RE, Parker R.
Mol Cell Biol 20(21):8230-43. 2000
7ADIPOR1, AIG1, AMDHD2, ANKHD1, ANKRD20A1, ANKRD27, ANKRD32, APH1A, APH1B, APIP, APOLD1, ARS2, ASCC1, ATXN10, BOLA1, C10orf10, C14orf166, C19orf56, C20orf109, C20orf4, C2orf14, C2orf16, C6orf60, C6orf62, CALCOCO1, CAMKK1, CCDC113, CCDC53, CCDC9, CCNB2, CD99L2, CDK5RAP1, CDK5RAP1, CGI-96, CHMP5, CHPF, CIAO2B, CLIC4, CLPB, COPZ1, COQ4, COQ6, CRELD1, CUTC, CYBRD1, DDX47, DERA, DHRS7, DHRS7B, DHRS7B, DPH5, DTNB, DYNC1LI2, EEF1AKNMT, ELOVL1, EMC9, ERGIC3, ESPN, EXOSC1, EXOSC3, FAHD2A, FAM108B1, FAM164A, FAM18B, FAM32A, FAM82B, FCF1, FIP1L1, FLYWCH1, FYTTD1, GABARAPL1, GET4, GLOD4, GLRX2, GOLT1B, GOLT1B, GPR89A, GPS2, GRIPAP1, HDDC2, HDGFRP3, HIGD1A, IER3IP1, IFT52, ISOC1, KIF18A, KIF20B, KIRREL2, KL3, KLC2, LACTB2, LHX6, LMAN2L, LUC7L2, MAF1, MAGMAS, MECR, MED23, MED31, MEMO, METTL9, MIS12, MOABHD5, MOB4, MPC1, MRPL11, MRPL2, MRPL4, MRPL48, MRPS15, MRPS16, MRPS16P2, MRPS18C, MRPS23, MRPS33, MTCH1, MTERF3, MTO1, MYCBPAP, NCALD, NCIE2, NDUFAF1, NELF, NELFB, NFU1, NMD3, NOSIP, NRBF2, NRIP2, NRIP2, NRSN2, NUDT12, OTUD6B, PARVB, PCBD2, PHF20L1, PIGT, PMFBP1, PNAS-4, PRPF31, PRSS23, PTRH2, QRSL1, RBMX2, RGMA, RGMB, RNF103-CHMP3, RNF123, RNF146, RRNAD1, RRP15, RWDD1, RWDD3, SAMHD1, SAMM50, SCCPDH, SECISBP2, SEMA4F, SERBP1, SERBP1, SERP1, SH3BP5L, SIDT2, SLC25A24, SLC25A39, SLC25A39, SLC35C2, SLC37A3, SLC41A2, SLC6A16, SLMO2, SMC6, SPEF1, SQRDL, STARD10, STMN2, SYF2, TARDBP, TBC1D3, TBL2, TFB1M, TFIP11, THAP4, THAP4, TIGD6, TIMMDC1, TMED5, TMED7, TMEM47, TPPP3, TRAF7, TRAPPC12, TRAPPC4, TRMT6, TRNT1, TSC22D3, TSPAN14, TWF2, UBE1DC1, UBE2J1, UCHL5, UNC50, USP39, UTP11L, VPS36, WDR37, WDR50, WDR91, WSB1, YARS2, YIPF3, YPEL5, ZC3H13, ZDHHC9, ZMYND12, ZMYND15, ZRANB3
Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics.
Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin W.
Genome Res 10(5):703-13. 2000