Citations for
1COG4, SWILS
A Recurrent De Novo Heterozygous COG4 Substitution Leads to Saul-Wilson Syndrome, Disrupted Vesicular Trafficking, and Altered Proteoglycan Glycosylation.
Ferreira CR, Xia ZJ, Clément A, Parry DA, Davids M, Taylan F, Sharma P, Turgeon CT, Blanco-Sánchez B, Ng BG, Logan CV, Wolfe LA, Solomon BD, Cho MT, Douglas G, Carvalho DR, Bratke H, Haug MG, Phillips JB, Wegner J, Tiemeyer M, Aoki K; Undiagnosed Diseases Network; Scottish Genome Partnership, Nordgren A, Hammarsjö A, Duker AL, Rohena L, Hove HB, Ek J, Adams D, Tifft CJ, Onyekweli T, Weixel T, Macnamara E, Radtke K, Powis Z, Earl D, Gabriel M, Russi AHS, Brick L, Kozenko M, Tham E, Raymond KM, Phillips JA 3rd, Tiller GE, Wilson WG, Hamid R, Malicdan MCV, Nishimura G, Grigelioniene G, Jackson A, Westerfield M, Bober MB, Gahl WA, Freeze HH.
Am J Hum Genet 103(4):553-567. doi: 10.1016/j.ajhg.2018.09.003. 2018
2COG4, COG8, STX16, STX5
COG complexes form spatial landmarks for distinct SNARE complexes.
Willett R, Kudlyk T, Pokrovskaya I, Schönherr R, Ungar D, Duden R, Lupashin V.
Nat Commun 4:1553. doi: 10.1038/ncomms2535. 2013
3COG1, COG2, COG3, COG4
Molecular organization of the COG vesicle tethering complex.
Lees JA, Yip CK, Walz T, Hughson FM.
Nat Struct Mol Biol 17(11):1292-7. Epub 2010 Oct 24. 2010
4COG4, SCFD1
Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing.
Laufman O, Kedan A, Hong W, Lev S.
EMBO J 28(14):2006-17. Epub 2009 Jun 18. 2009
5CDG2J, COG4
Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene.
Richardson BC, Smith RD, Ungar D, Nakamura A, Jeffrey PD, Lupashin VV, Hughson FM.
Proc Natl Acad Sci U S A 106(32):13329-34. Epub 2009 Jul 27.PMID: 19651599 2009
6CDG2J, COG4
Golgi function and dysfunction in the first COG4-deficient CDG type II patient.
Reynders E, Foulquier F, Leão Teles E, Quelhas D, Morelle W, Rabouille C, Annaert W, Matthijs G.
Hum Mol Genet 18(17):3244-56. Epub 2009 Jun 3.PMID: 19494034 2009
7CDG2E, CDG2G, CDG2H, CDG2I, CDG2J, COG1, COG4, COG5, COG7, COG8
Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation.
Paesold-Burda P, Maag C, Troxler H, Foulquier F, Kleinert P, Schnabel S, Baumgartner M, Hennet T.
Hum Mol Genet 18(22):4350-6. Epub 2009 Aug 18. 2009
8COG1, COG2, COG3, COG4, COG5, COG6, COG7, COG8
Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation.
Smith RD, Lupashin VV.
Carbohydr Res 343(12):2024-31. Epub 2008 Feb 2. Review.PMID: 18353293 2008
9COG1, COG2, COG3, COG4, COG5, COG6, COG7, COG8
Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells.
Oka T, Vasile E, Penman M, Novina CD, Dykxhoorn DM, Ungar D, Hughson FM, Krieger M.
J Biol Chem 280(38):32736-45. Epub 2005 Jul 28.PMID: 16051600 2005
10COG1, COG2, COG3, COG4, COG5, COG6, COG7, COG8
The binary interacting network of the conserved oligomeric Golgi tethering complex.
Loh E, Hong W.
J Biol Chem 279(23):24640-8. Epub 2004 Mar 26. 2004
11COG1, COG2, COG3, COG4, COG5, COG6, COG7, COG8
Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function.
Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG.
J Cell Biol 157(3):405-15. 2002
12COG4, COG8
The Sec34/35 Golgi transport complex is related to the exocyst, defining afamily of complexes involved in multiple steps of membrane traffic.
Whyte JR, Munro S.
Dev Cell 1(4):527-37. 2001