Citations for
1ATP2A2, CLPB, MGCA7
CLPB Mutations Cause 3-Methylglutaconic Aciduria, Progressive Brain Atrophy, Intellectual Disability, Congenital Neutropenia, Cataracts, Movement Disorder.
Wortmann SB, Ziętkiewicz S, Kousi M, Szklarczyk R, Haack TB, Gersting SW, Muntau AC, Rakovic A, Renkema GH, Rodenburg RJ, Strom TM, Meitinger T, Rubio-Gozalbo ME, Chrusciel E, Distelmaier F, Golzio C, Jansen JH, van Karnebeek C, Lillquist Y, Lücke T, Őunap K, Zordania R, Yaplito-Lee J, van Bokhoven H, Spelbrink JN, Vaz FM, Pras-Raves M, Ploski R, Pronicka E, Klein C, Willemsen MA, de Brouwer AP, Prokisch H, Katsanis N, Wevers RA.
Am J Hum Genet 96(2):245-57. doi: 10.1016/j.ajhg.2014.12.013. Epub 2015 Jan 15. 2015
2CLPB, MGCA7
Disruption of CLPB is associated with congenital microcephaly, severe encephalopathy and 3-methylglutaconic aciduria.
Capo-Chichi JM, Boissel S, Brustein E, Pickles S, Fallet-Bianco C, Nassif C, Patry L, Dobrzeniecka S, Liao M, Labuda D, Samuels ME, Hamdan FF, Velde CV, Rouleau GA, Drapeau P, Michaud JL.
J Med Genet Med Genet. 2015 Feb 3. pii: jmedgenet-2014-102952. doi: 10.1136/jmedgenet-2014-102952. [Epub ahead of print] 2015
3CLPB, MGCA7
CLPB Variants Associated with Autosomal-Recessive Mitochondrial Disorder with Cataract, Neutropenia, Epilepsy, and Methylglutaconic Aciduria.
Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, Christensen M, Atherton A, Farrow E, Miller N, Kingsmore SF, Ostergaard E.
Am J Hum Genet 96(2):258-65. doi: 10.1016/j.ajhg.2014.12.020. Epub 2015 Jan 15. 2015
4CLPB, MGCA7
Bi-allelic CLPB mutations cause cataract, renal cysts, nephrocalcinosis and 3-methylglutaconic aciduria, a novel disorder of mitochondrial protein disaggregation.
Kanabus M, Shahni R, Saldanha JW, Murphy E, Plagnol V, Hoff WV, Heales S, Rahman S.
J Inherit Metab Dis Inherit Metab Dis. 2015 Jan 18. [Epub ahead of print] 2015
5CLPB
ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins.
Aguado A, Fernandez-Higuero JA, Cabrera Y, Moro F, Muga A.
Biochem J iochem J. 2015 Jan 5. [Epub ahead of print] 2015
6CLPB
ClpB chaperone passively threads soluble denatured proteins through its central pore.
Nakazaki Y, Watanabe YH.
Genes Cells 19(12):891-900. doi: 10.1111/gtc.12188. Epub 2014 Oct 7. 2014
7CLPB
trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication.
Zeymer C, Fischer S, Reinstein J.
J Biol Chem 289(47):32965-76. doi: 10.1074/jbc.M114.608828. Epub 2014 Sep 24. 2014
8CLPB
Nucleotide utilization requirements that render ClpB active as a chaperone.
del Castillo U, Fernández-Higuero JA, Pérez-Acebrón S, Moro F, Muga A.
FEBS Lett 584(5):929-34. doi: 10.1016/j.febslet.2010.01.029. Epub 2010 Jan 19. 2010
9CLPB
Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments.
Haslberger T, Zdanowicz A, Brand I, Kirstein J, Turgay K, Mogk A, Bukau B.
Nat Struct Mol Biol 15(6):641-50. doi: 10.1038/nsmb.1425. Epub 2008 May 18. 2008
10CLPB
Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.
Doyle SM, Hoskins JR, Wickner S.
Proc Natl Acad Sci U S A 104(27):11138-44. Epub 2007 Jun 1. 2007
11CLPB
The roles of conserved amino acids on substrate binding and conformational integrity of ClpB N-terminal domain.
Tanaka N, Tani Y, Tada T, Lee YF, Kanaori K, Kunugi S.
Biochemistry 45(28):8556-61. 2006
12POLG2, CDR2, RCVRN, APBB1, MAP6, CLPB, PKIA, ADIPOR1, CYB5R1, GUK1, ADCY2, MEF2C, NT5E
Expression profiling of the developing and mature Nrl-/- mouse retina: identification of retinal disease candidates and transcriptional regulatory targets of Nrl.
Yoshida S, Mears AJ, Friedman JS, Carter T, He S, Oh E, Jing Y, Farjo R, Fleury G, Barlow C, Hero AO, Swaroop A.
Hum Mol Genet 13(14):1487-503. Epub 2004 May 26. 2004
13AIF1L, ANKHD1, ANKRD20A1, ANKRD27, ANKRD32, APH1B, APOLD1, ARMC4, ATXN10, C10orf10, C10orf10, C10orf118, C2orf14, C2orf16, C6orf60, C6orf62, C8orf71, CALCOCO1, CAMKK1, CCDC113, CCDC135, CCDC9, CCDC90B, CCNB2, CD99L2, CHPF, CLIC4, CLPB, CRELD1, CYBRD1, DDX47, DHRS7B, ESPN, FIP1L1, FLYWCH1, FYTTD1, GABARAPL1, GOLT1B, GPS2, GRIPAP1, HIGD1A, IER3IP1, KIF18A, KIRREL2, KLC2, LHX6, LMAN2L, MAF1, MED23, MIS12, MOB4, MYCBPAP, NCALD, NELF, NELFB, NRBF2, NRIP2, NRIP2, NRSN2, NUDT12, PCBD2, PMFBP1, PRPF31, PRSS23, QRSL1, RGMA, RGMB, RNF123, RNF146, RWDD3, SAMHD1, SECISBP2, SEMA4F, SERBP1, SERP1, SH3BP5L, SLC25A24, SLC25A39, SLC37A3, SLC41A2, SLC6A16, SMC6, SPEF1, STMN2, TARDBP, TBC1D3, TBL2, TFIP11, TIGD6, TIMMDC1, TMEM117, TMEM186, TNB, TRAF7, TRAPPC8, TSC22D3, TSPAN14, TWF2, UBA5, UNC50, WDR24, WDR37, WDR91, WSB1, YIPF3, ZC3H13, ZMYND12, ZMYND15, ZRANB3
Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs.
Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Bocher M, Blocker H, Bauersachs S, Blum H, Lauber J, Dusterhoft A, Beyer A, Kohrer K, Strack N, Mewes HW, Ottenwalder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M, Poustka A.
Genome Res 11(3):422-35. 2001
14ADIPOR1, AIG1, AMDHD2, ANKHD1, ANKRD20A1, ANKRD27, ANKRD32, APH1A, APH1B, APIP, APOLD1, ARS2, ASCC1, ATXN10, BOLA1, C10orf10, C14orf166, C19orf56, C20orf109, C20orf4, C2orf14, C2orf16, C6orf60, C6orf62, CALCOCO1, CAMKK1, CCDC113, CCDC53, CCDC9, CCNB2, CD99L2, CDK5RAP1, CDK5RAP1, CGI-96, CHMP5, CHPF, CIAO2B, CLIC4, CLPB, COPZ1, COQ4, COQ6, CRELD1, CUTC, CYBRD1, DDX47, DERA, DHRS7, DHRS7B, DHRS7B, DPH5, DTNB, DYNC1LI2, EEF1AKNMT, ELOVL1, EMC9, ERGIC3, ESPN, EXOSC1, EXOSC3, FAHD2A, FAM108B1, FAM164A, FAM18B, FAM32A, FAM82B, FCF1, FIP1L1, FLYWCH1, FYTTD1, GABARAPL1, GET4, GLOD4, GLRX2, GOLT1B, GOLT1B, GPR89A, GPS2, GRIPAP1, HDDC2, HDGFRP3, HIGD1A, IER3IP1, IFT52, ISOC1, KIF18A, KIF20B, KIRREL2, KL3, KLC2, LACTB2, LHX6, LMAN2L, LUC7L2, MAF1, MAGMAS, MECR, MED23, MED31, MEMO, METTL9, MIS12, MOABHD5, MOB4, MPC1, MRPL11, MRPL2, MRPL4, MRPL48, MRPS15, MRPS16, MRPS16P2, MRPS18C, MRPS23, MRPS33, MTCH1, MTERF3, MTO1, MYCBPAP, NCALD, NCIE2, NDUFAF1, NELF, NELFB, NFU1, NMD3, NOSIP, NRBF2, NRIP2, NRIP2, NRSN2, NUDT12, OTUD6B, PARVB, PCBD2, PHF20L1, PIGT, PMFBP1, PNAS-4, PRPF31, PRSS23, PTRH2, QRSL1, RBMX2, RGMA, RGMB, RNF103-CHMP3, RNF123, RNF146, RRNAD1, RRP15, RWDD1, RWDD3, SAMHD1, SAMM50, SCCPDH, SECISBP2, SEMA4F, SERBP1, SERBP1, SERP1, SH3BP5L, SIDT2, SLC25A24, SLC25A39, SLC25A39, SLC35C2, SLC37A3, SLC41A2, SLC6A16, SLMO2, SMC6, SPEF1, SQRDL, STARD10, STMN2, SYF2, TARDBP, TBC1D3, TBL2, TFB1M, TFIP11, THAP4, THAP4, TIGD6, TIMMDC1, TMED5, TMED7, TMEM47, TPPP3, TRAF7, TRAPPC12, TRAPPC4, TRMT6, TRNT1, TSC22D3, TSPAN14, TWF2, UBE1DC1, UBE2J1, UCHL5, UNC50, USP39, UTP11L, VPS36, WDR37, WDR50, WDR91, WSB1, YARS2, YIPF3, YPEL5, ZC3H13, ZDHHC9, ZMYND12, ZMYND15, ZRANB3
Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics.
Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin W.
Genome Res 10(5):703-13. 2000
15CLPB
Expression of a putative ATPase suppresses the growth defect of a yeast potassium transport mutant: identification of a mammalian member of the Clp/HSP104 family.
Perier F, Radeke CM, Raab-Graham KF, Vandenberg CA.
Gene 152(2):157-63. 1995