Citations for
1CLASP1, RAN
RanGTP and CLASP1 cooperate to position the mitotic spindle.
Bird SL, Heald R, Weis K.
Mol Biol Cell 24(16):2506-14. doi: 10.1091/mbc.E13-03-0150. Epub 2013 Jun 19. 2013
2BRCA1, CLASP1
A DNA-damage selective role for BRCA1 E3 ligase in claspin ubiquitylation, CHK1 activation, and DNA repair.
Sato K, Sundaramoorthy E, Rajendra E, Hattori H, Jeyasekharan AD, Ayoub N, Schiess R, Aebersold R, Nishikawa H, Sedukhina AS, Wada H, Ohta T, Venkitaraman AR.
Curr Biol 22(18):1659-66. doi: 10.1016/j.cub.2012.07.034. Epub 2012 Aug 2. 2012
3CLASP1, MAP4
MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis.
Samora CP, Mogessie B, Conway L, Ross JL, Straube A, McAinsh AD.
Nat Cell Biol 13(9):1040-50. doi: 10.1038/ncb2297. 2011
4CLASP1, GSK3A
GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules.
Hur EM, Saijilafu, Lee BD, Kim SJ, Xu WL, Zhou FQ.
Genes Dev 25(18):1968-81. doi: 10.1101/gad.17015911. 2011
5CLASP1, KIF2B, KIF2C, SPAG5
CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity.
Manning AL, Bakhoum SF, Maffini S, Correia-Melo C, Maiato H, Compton DA.
EMBO J 29(20):3531-43. Epub 2010 Sep 17. 2010
6CLASP1, PRC1
PRC1 Cooperates with CLASP1 to Organize Central Spindle Plasticity in Mitosis.
Liu J, Wang Z, Jiang K, Zhang L, Zhao L, Hua S, Yan F, Yang Y, Wang D, Fu C, Ding X, Guo Z, Yao X.
J Biol Chem 284(34):23059-71. Epub 2009 Jun 26. 2009
7CLASP1, CLASP2
Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells.
Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I.
Nat Cell Biol. 11(9):1069-80. 2009
8CLASP1, CLASP2
Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments.
Tsvetkov AS, Samsonov A, Akhmanova A, Galjart N, Popov SV.
Cell Motil Cytoskeleton 64(7):519-30. 2007
9CLASP1, CLASP2
Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function.
Pereira AL, Pereira AJ, Maia AR, Drabek K, Sayas CL, Hergert PJ, Lince-Faria M, Matos I, Duque C, Stepanova T, Rieder CL, Earnshaw WC, Galjart N, Maiato H.
Mol Biol Cell 17(10):4526-42. Epub 2006 Aug 16. 2006
10CLASP1, CLASP2
Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment.
Mimori-Kiyosue Y, Grigoriev I, Sasaki H, Matsui C, Akhmanova A, Tsukita S, Vorobjev I.
Genes Cells 11(8):845-57. 2006
11CLASP1, CLASP2
CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex.
Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A.
J Cell Biol. 168(1):141-53. 2005
12CLASP1, CLASP2
CLIPs and CLASPs and cellular dynamics.
Galjart N.
Nat Rev Mol Cell Biol. 6(6):487-98. 2005
13CLASP1
Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics.
Maiato H, Fairley EA, Rieder CL, Swedlow JR, Sunkel CE, Earnshaw WC.
Cell 113(7):891-904. 2003
14CLASP1, CLASP2
MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity.
Maiato H, Sampaio P, Lemos CL, Findlay J, Carmena M, Earnshaw WC, Sunkel CE.
J Cell Biol 157(5):749-60. 2002
15CLASP1, CLASP2, CLIP1
Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts.
Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering BM, De Zeeuw CI, Grosveld F, Galjart N.
Cell 104(6):923-35. 2001
16CLASP1, CLASP2
Mast, a conserved microtubule-associated protein required for bipolar mitotic spindle organization.
Lemos CL, Sampaio P, Maiato H, Costa M, Omel'yanchuk LV, Liberal V, Sunkel CE.
EMBO J 19(14):3668-82. 2000
17AATK, ACIN1, ACOT11, ACSBG1, ADAMTS4, ADGRV1, AKAP11, ANKLE2, ARHGAP26, ARHGEF2, ASTN2, ATP2C2, ATP9A, BICD2, BZRAP1, C12orf51, CAND2, CEP135, CLASP1, CLASP2, CLUAP1, CLUH, CNOT3, COBL, CPNE3, CRTC1, CRY2, CSTF2T, CUL3, CUL4B, DAAM1, DAGLA, DEPDC5, DNAJC13, DOCK10, DZIP3, FBXW11, FKBP15, G3BP2, HEPH, HIP1R, HIPK1, ICOSLG, KIAA0649, KIAA0652, KIF13B, KIF1C, KIF21A, L3MBTL1, LDB3, MAGI2, MAP4K4, MFAP3L, MGEA5, MRC2, MTMR4, N4BP1, NPHP4, OBSL1, PAN2, PHACTR2, PHF2, PHLDB1, PLXND1, PPFIA3, PTCD1, RAB11FIP3, RBM19, RICH2, RNF40, RNF8, ROCK2, RRP12, SAPS2, SETX, SIN3B, SLC24A1, SMCHD1, SNAP91, SOCS5, SS18L1, SWAP70, TBC1D9B, TELO2, TNRC15, TSC22D2, UBE4B, UHRF1BP1L, ULK2, ZBED4, ZC3H11A, ZNF623
Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.
Ishikawa K, Nagase T, Suyama M, Miyajima N, Tanaka A, Kotani H, Nomura N,Ohara O.
DNA Res 5(3):169-76. 1998