Citations for
1CCT5, ELP1, HSAN1, HSAN2A, HSAN3, HSAN4, HSAN5, NGF, NTRK1, SNSP, SPTLC1, WNK1
Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation.
Rotthier A, Baets J, De Vriendt E, Jacobs A, Auer-Grumbach M, Lévy N, Bonello-Palot N, Kilic SS, Weis J, Nascimento A, Swinkels M, Kruyt MC, Jordanova A, De Jonghe P, Timmerman V.
Brain 132(Pt 10):2699-711. Epub 2009 Aug 3.PMID: 19651702 2009
2CCT2, CCT3, CCT4, CCT5, CCT6A, CCT7, CCT8, TCP1
The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1.
Zebol JR, Hewitt NM, Moretti PA, Lynn HE, Lake JA, Li P, Vadas MA, Wattenberg BW, Pitson SM.
Int J Biochem Cell Biol 41(4):822-7. Epub 2008 Aug 14.PMID: 18775504 2009
3CCT5, TCP1
The role of molecular chaperones in human misfolding diseases.
Broadley SA, Hartl FU.
FEBS Lett 583(16):2647-53. Epub 2009 Apr 23. Review.PMID: 19393652 2009
4CCT1, CCT2, CCT3, CCT4, CCT5, CCT6A, CCT7, CCT8
Overexpressed ribosomal proteins suppress defective chaperonins in Saccharomyces cerevisiae.
Kabir MA, Sherman F.
FEMS Yeast Res 8(8):1236-44. Epub 2008 Aug 1.PMID: 18680526 2008
5CCT5, SNSP
Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia.
Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M.
J Med Genet 43(5):441-3. Epub 2006 Jan 6. 2006
6CCT5
Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex.
Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA.
Genes Dev 16(24):3130-5. 2002
7CCT5
Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin.
Llorca O, Martin-Benito J, Gomez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM.
J Struct Biol 135(2):205-18. 2001
8CCT2, CCT3, CCT4, TCP1, CCT5, CCT6A, CCT6B, CCT7, CCT8
Cytosolic chaperonin-containing t-complex polypeptide 1 changes the content of a particular subunit species concomitant with substrate binding and folding activities during the cell cycle.
Yokota S, Yanagi H, Yura T, Kubota H.
Eur J Biochem 268(17):4664-73. 2001
9ARID4B, BOP1, CACNA2D2, CCT5, CKAP5, CTR9, DCLRE1A, DELE1, DGKD, DHX34, EIF3A, EIF4A3, EMC1, EMC2, EXOSC7, FAM175B, FAM53B, GANAB, GGA3, GIT2, GPD1L, INPP5E, KEAP1, KIAA0082, KIAA0087, KIAA0114, KIAA0125, MAD2L1BP, MBTPS1, METAP1, MORC3, NCAPD2, NUP93, OEATC1, PASK, PMPCA, PRDX6, PSMD6, PUM1, RBM10, SAFB2, SART3, SCRIB, SERTAD2, SNRK, SPCS2, TAGLN2, THRAP4, TRIM14, TTLL12, UBAP2L, UBE4A, URB2, ZC3H3
Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1.
Nagase T, Miyajima N, Tanaka A, Sazuka T, Seki N, Sato S, Tabata S,Ishikawa K, Kawarabayasi Y, Kotani H, et al.
DNA Res 2(1):37-43. 1995
10CCT5
Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells.
Roobol A, Holmes FE, Hayes NV, Baines AJ, Carden MJ.
J Cell Sci 108 ( Pt 4):1477-88.PMID: 7615668 1995
11CCT2, CCT3, CCT4, CCT5, CCT6A, CCT6B
Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin.
Kubota H, Hynes G, Carne A, Ashworth A, Willison K.
Curr Biol 4(2):89-99 1994